ResearchCoders’ For Programmers Series
Honeywords: Making Password-Cracking
Detectable
V.1

Mohammed Q. Hussain
mqgh@reseachcoders.dev

December 2018

This document is one of ”For Programmers” series, a part of ResearchCoders
project. It explains the ideas of [1] for programmers to help them implement
them. Please visit our website for more information: http://www.reseachcoders.dev

1 Introduction

The work in [1] focuses on the scenario where an attacker of a specific system
steals a file (or data on database) that contains the hashed passwords of sys-
tem’s user. The authors present the idea of honeywords to make such situation
detectable. The paper suggests that instead of associating just one password to
users accounts, more than one password is associated to all users accounts of the
system, just one of these passwords is correct, others are just honeywords. The
presented mechanism in this work lies under the umbrella of deception defense
mechanisms.

1.1 Deception Defense

In computer security, deception defense is a way of protecting systems from
attacker but instead of traditional way which aims to prevent the attacks, in
deception defence the attacker will be deceived. We all know that perfect secu-
rity of any given system is unattainable. Therefore, multiple ways other than
completely-preventing-the-attacks has been presented in the scientific literature.
Deception defense one of those ways, the other one is Moving Target Defense.
The work in [1] is one of deception defense techniques. Another example of
deception attacks is honeypot, which is a normal machine (or virtual machine)
in a network which appears to provide some services, for example serving a
website, but in reality, the honeypot tries to appeal the attackers to intrude
it. Once the attacker take the bait and attack it, the honeypot is going to log

detailed information about the attacker in order to be analyzed later by the
system administrator. Of course, the honeypot has no valuable data for the
attacker, so by attacking it, the attacker just wasted her time and has been
exposed for the system administrator.

1.2 Hashed Passwords

It is a common practice in current system to store the passwords of users as
hashed passwords instead of plaintext. When we say a hash password we mean
that the original password has been passed to some hash function, and the
returned result of this function is what we call hashed password and it is what
will be stored in the system, the hashed password of course will be different
than the original password. To authenticate a user when only hashed password
is stored in the system, the user first has to enter her password into the system,
then the system is going to use the hash function on the password the user
just entered, if the hash of the entered password matches the hashed password
which is stored in the system, then the entered password is correct, otherwise,
the entered password isn’t correct.

A hash function takes an input, and converts this input into something
else. In this case, the input is the original password, and the output is the
hashed password. In the realm of passwords, a special kind of hash functions
are used, they are called cryptographic hash functions. These cryptographic
hash functions has an important property which makes them useful for hashing
the passwords. They are one-way functions, which means that computing the
hashed password (output) from the original password (input) is easy, but if
we only have the hashed password and we would like to compute the original
password from it, that will be hard. A popular example of cryptographic hash
functions is MD5 which can be used easily in multiple programming languages
such as PHP ! and Python 2.

As an example, let’s say that we have a PHP web application that stores
users’ passwords as hashed passwords by using MD5. Let’s say one of user’s
password is: 123. If we use MD5 to hash this password the output 2 will be
202¢b962ach9075b964b07152d234b70 which will be stored in the database. If
some attacker manages to steal the list of users and their passwords they will
get this type of passwords. To invert these hashed passwords to the original
ones, multiple time/space consuming techniques are available, such as brute-
force attacks and rainbow tables.

1.2.1 Salts

As an enhancement for hashed passwords technique, sometimes salts are used.
Salt is a randomly generated data which is associated to a password. This pass-
word is concatenated with its salt and the whole string is passed as an input to

Lhttp://php.net/manual/en/function.md5.php
2https://docs.python.org/2/library /md5.html
3The output of hash functions in general is called digest.

the hash function, the salt will be stored in the system as well and the users know
nothing about them. For example, let the password of the user is 123 and its salt
is 539, then the input to the hash function (MD5 for example) will be 123539,
which gives the following hashed password: 3e4281ab57e6c¢6e3395d90e348f926a7.
Salts are useful against rainbow tables, brute-force and dictionary attacks, they
make them harder and more time consuming.

2 Honeywords Technique

As mentioned before, this paper [1] assumes that some attacker has obtained
a file the contains the usernames, their hashed passwords and salts. In normal
situations, where honeywords technique is not employed, in each entry of the file
there will be one unique username and the associated hashed password. When
honeywords are used, for each username there will be multiple entries, each
with different hashed password, only one of them is the real password and the
others are honeywords. For example, let’s assume there is a username called u;
with five different hashed passwords associated with it, in some way, the attacker
managed to crack one of those five hashed passwords, but this cracked password,
for the bad luck of the attacker, is a honeyword and not the real password of u; .
When the attacker tries to login by using this honeyword the system is going
to detect this action and send an alert for the system administrator that there
is a possible passwords disclosure.

2.1 Honeychecker

From the previous discussion until now, there is an obvious question that pop up,
how they system is going to differentiate between the types of stored passwords
of a specific user? On other words, the user u; which mentioned previously has
five hashed passwords, how the system that employs honeywords technique can
tell which of these passwords is the real one and which are honeywords?

The naive solution for this problem is to store this information in the same
place, for example, if our system uses database to maintain the list of users and
their passwords in a database table called users, a new column called honeyword
can be defined in the users table, and if its value is Y then the hashed password
of corresponding row is a honeyword, otherwise it’s not. The problem of this
solution is obvious, since we assumed that the attacker is able to compromise
this server and obtain the list of username and hashed passwords then it is
logical to assume that the attacker is also able to obtain the data of honeyword
column, that makes the whole honeyword technique useless. Therefore, we need
a better and more secure solution that doesn’t store more secrets on the same
server. For the preceding discussion, we call the server that contains the main
web application Si.

To solve this problem, Honeychecker is presented in [1] which is another
secure server that has a secure communication channel with S; and stores the
information about honeywords of each specific account. So, in this way we will

have two servers, the first one is S; which has the main application (e.g. web
application) and stores the hash passwords (real passwords and honeywords) of
the users. The second server is the Honeychecker. With these two servers that
have different roles to secure the system, we have got what is called a distributed
security system. When a user tries to login, Sy is going to consult Honeychecker
which is capable of detecting any anomaly (e.g. using honeyword to login), when
such anomaly is detected, and alarm can be sent to the system administrator.
Honeychecker has been designed in a way that when the it is compromised by
itself, it doesn’t cause users’ account to be compromised.

2.1.1 The List of Sweetwords

For each user, the Honeychecker maintains a list of sweetwords, To make our
discussion easier, let’s give this list a name, say W. A sweetword, which is a
member of the list W, can be a honeyword (a chaff, which is a fake password)
or a sugarword (which is the original password). The size of the list W can
be a system-wide parameter k for each user, the authors recommend the size
20 for each user’s list of sweetwords (W), more that 20 can also be used of
course. Beside the list W for each user, the Honeychecker also stores the index
of the sugarword (the original password) in W. The following pseudocode shows
an example of how the the information related to the user u; are stored in
Honeychecker where k& = 5:

// sweetWordsOfUl Also known as "List W of U1"

sweetWords0fU1[O
sweetWordsOfU1[1

] = "5737034557ef5b8c02c0e46513b98£90" ;
]
sweetWordsOfU1[2 1]
]
]

"73e4fad7c9a93fbec445096159ee5£78";
"a2596ad2908727814dal1e8732a848589";
"202cb962ac59075b964b07152d234b70" ;
"caf1a3dfb505ffed0d024130£58chcfa";

sweetWordsOfU1[3
sweetWordsOfU1[4

index0fUlSugarword = 3;

The Honeychecker is also responsible of generating the honeywords that
should be in a specific user’s sweetwords list W. The generation of honeywords
should be random and generated honeyword can be a tough nut which is a very
strong password that its hash cannot be cracked by the attacker.

2.1.2 What Honeychecker Can Do If a Honeyword is Used?

The authors suggested many multiple actions to be done when someone uses a
honeyword to login, (1) an alert can be sent to the system administrator that
shows a possible passwords disclosure, (2) letting login proceed to a honeypot
that gathers forensic information about the logged user, (3) shutting down the
account of the user until the user reset his password, (4) shutting down all the

accounts and force the users to change their passwords. However, the program-
mer of the system is free to choose any of these options or to define a new
one.

2.2 Honeyword Generation

The proposed methods of generating honeywords are divided to two groups: (1)
those methods that don’t require modifications on change password user inter-
face (legacy-UI') and (2) the methods that require some modifications (modified-
url).

Chaffing is the process of generating honeywords, placing them in a random
order beside the sugarword. This process should generate honeywords in a way
that makes the honeywords hard to be distinguished from the sugarword (the
original password) by the attacker.

2.2.1 Legacy-UI Methods

In legacy user interface of change password, the system request from the user
to enter her new password.

Chaffing by Tweaking In this method, in order to generate a new hon-
eyword, the characters in some selected positions of the sugarword (original
password) are replaced with randomly-chosen character of the same type, for
example, digits are replaced with digits, letters are replaced with letters and
special characters are replace with special characters. The number of positions
that should be changed can be a system-wide parameter, this parameter is called
t.

A derived method of chaffing by tweaking method is called chaffing by tail
tweaking where always the last ¢ positions of sugarword are selected and re-
placed. For example, given that the system changes three positions in the
sugarword (which means ¢ = 3), and the sugarword itself is BG + 7y45, then
one of possible honeyword to be generated by using chaffing by tail tweaking is
BG + 7¢03.

Another derived method is chaffing by tweaking digits, which selects the lat
t digits of the sugarword and replaces them. For example, if the sugarword
is 42 * flavors and t = 2 then one possible honeyword to be generated is
18 * flavors.

Chaffing with a Password Model This method uses a list of thousands
or millions of real passwords to generate honeywords from, though, the authors
note that using a publicly available passwords list is not a good idea since the
attacker may have an access to it and can use it to differentiate between real
passwords and honeywords.

Another method under this umbrella is modelling syntaxz which uses same
way as compiler’s lexical analyzer uses. The sugarword will be analyzed to

extract tokens out of it. By using these tokens the components of the sugar-
word are replaced with other components. For example, let the sugarword is
mice3blind, tokens extraction is going to give us the following result about this
password Wy|D1|W5, which means that this password contains a word of 4 let-
ters (Wy) then there is a digit (D) and finally a word of 5 letters (W5). The
replacements of both W, and W5 can be from a dictionary, W, will be replaced
by another word with 4 letters, for example "gold”, and W5 will be replaced
with a word with 5 letters, for example ”rings”, finally, D; can be replaced with
any other digit. So a possible generated honeyword by using this method is
golddrings.

Chaffing with Tough Nuts As mentioned before, tough nuts are hashes
that really hard to crack by the attacker, in this way, multiple (but not all the
list of honeywords) tough nuts are generated and used in the list W of the user,
these tough nuts can be generated easily by for example hashing a really long
and random text. When the attacker cannot crack some passwords in the list,
he maybe pause the attack and don’t try to use the cracked passwords.

2.2.2 Modified-UI Method

In this method, the authors propose to change the interface of changing password
by showing for the user that their entered password will be appended by some
randomly generated digits. Say the user entered the password ”"RedEye2” and
the system showed for her that this password will be appended with the digits
74137, then the real password of the user will be "RedEye2413”. After that,
the aforementioned method chaffing by tail tweaking is used.

3 Epilogue

I tried my best in this document to give a general picture of the work presented
in [1] in an easy way for programmers, yet, I don’t believe that this document
is enough for an enthusiastic programmer that would like to read all the details.
Therefore, I encourage you to take a look at the original work to read about
other details not presented in this document.

References

[1] Ari Juels and Ronald L Rivest. Honeywords: Making password-cracking de-
tectable. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 145-160. ACM, 2013.

