
ResearchCoders’ For Programmers Series

The Design and Implementation of Microdrivers

V.1

Mohammed Q. Hussain
mqh@reseachcoders.dev

January 2019

This document is one of ”For Programmers” series, a part of ResearchCoders
project. It explains the ideas of [1] for programmers to help them implement
them. Please visit our website for more information: http://www.reseachcoders.dev

1 Introduction

Device drivers can be considered as an extension of the operating system’s ker-
nel, they work in kernel-mode where they have privileges similar to the kernel
itself. Furthermore, to write device drivers, the programmer cannot use user-
mode development tools. Although running device drivers in kernel-mode is
good for performance, but the drawback is that they decrease the reliability of
the operating system. For example, one device driver that is written in a bad
way can cause the kernel of operating system to crash, which means the whole
machine will stop. According to the paper 89% of Windows XP crashes are
caused by device drivers, while in Linux driver code has 2 to 7 times the bug
density of other kernel’s parts.

To mitigate the reliability problem of device drivers, the authors of the paper
”The Design and Implementation of Microdrivers” [1] proposed Microdrivers
which is an idea that is obviously inspired by microkernel design. A microdriver
has two parts, the first one called k-driver which is a portion of device driver’s
code that works in kernel-mode due to its performance requirements, the second
part is u-driver which is the other portion of device driver’s code that work in
user-mode as a process. In this way, most of device driver’s code can be moved
to the userspace, which serves the reliability of the operating system.

1.1 Microdriver’s Benefits

The architecture of Microdrivers has been designed to gain the following ben-
efits. First, since a large portion of the driver will be moved to the userspace

1



(u-driver) then the normal userspace programming tools can be used with u-
drivers and they can be considered as normal applications. Second, since the
code that should work in high performance remain in the kernel and work in
kernel-mode, then Microdrivers give a performance that’s comparable to the
traditional architecture of device drivers and better performance than device
drivers that work fully in userspace. Third, if there are bugs in u-driver, this
will not cause the whole system to crash. Finally, microdrivers aim to be com-
patible with current operating systems, and the existing device drivers can be
converted to microdrivers, which saves all the time invested in writing current
device drivers.

1.2 DriverSlicer

To convert existing device drivers from traditional drivers architecture to Micro-
drivers architecture automatically, the authors proposed a tool called Driver-
Slicer which has two parts. The first part is the splitter which decides which
portion of driver’s code should remain in kernel (k-driver) and which portion
should be transferred to userspace (u-driver), this decision is taken based on
performance criteria. The second part is the code generator which generates
the code that moves the data between the components of microdriver (u-driver
and k-driver).

2 Microdrivers Architecture

As mentioned before, a device drivers in Microdrivers architecture are divided
into two parts, the first part is k-driver which runs in kernel, the other part is
u-driver which runs in userspace as a process. For efficiency, multiple k-drivers
may use the same u-driver. The kernel always calls the k-driver, and the k-
driver can call u-driver. These calls from k-driver for u-driver appear as local
calls to the k-driver, but in reality, an RPC-like mechanism is used to realize
such calls. Microdrivers architecture should be compatible with current device
drivers, so kernel’s interface for the device drivers should not be changed.

2.1 Dividing the Code

To decide which portion of code should be in k-driver and which should be in
u-driver, the authors chose performance as a criteria. According to the authors,
the device drivers usually contains two types of code, either data path code or
control path code.

The data path code is responsible for transmitting and receiving data, these
operations are performance-critical, so, they should be in k-driver for better
performance. The control path code usually perform non-critical operations
such as initializing and configuring the device and handling the errors, this
type of code should be moved to u-driver. The general rule is to keep any
performance-critical code in k-driver while move the other to u-driver.

2



2.2 Runtime

In Microdrivers architecture, runtime layers should be presented in both kernel
and userspace to provide the following functions:

• Communications: The k-driver and u-driver need to communicate some-
how to call each other’s functions and to transfer data.

• Object tracking: After dividing a driver into u-driver and k-driver, the
data structures that hold the shared information between the two com-
ponents will be available in two versions, user-mode version for u-driver
and kernel-mode version for k-driver. Object tracker’s responsibility is to
synchronize these data structures between the two components. For ex-
ample, when some changes are performed in a data structure of u-driver,
these changes should be reflected also in k-driver and vice versa.

• Recovery: One of Microdriver’s goal is to improve the reliability of device
driver’s architecture. Hence, one of runtime responsibilities is to restore
the system’s operations after a failure in u-driver. For example, unload
the k-driver when u-driver crashes.

3 Epilogue

This document aimed to show the general architecture of Microdrivers for the
programmers. Referring to the original work [1] is necessary for the program-
mers who would like to implement Microdrivers on some existing kernel since
the details of DriverSlicer are not mentioned in this document for the sake of
simplicity. Also, the authors have implemented Microdrivers in Linux kernel
and they wrote in their paper about this experiment and how they managed to
implement this architecture to achieve its goals.

References

[1] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakrishnan, Michael M
Swift, and Somesh Jha. The design and implementation of microdrivers. In
ACM SIGARCH Computer Architecture News, volume 36, pages 168–178.
ACM, 2008.

3


